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J. Phys. A: Math. Gen. 19 (1986) L667-L673. Printed in Great Britain 

LETTER TO THE EDITOR 

Non-universality in the dynamics at the percolation threshold 

S Jain 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 12 March 1986 

Abstract. The dynamical behaviour of the two-dimensional Ising model at the site percola- 
tion threshold on L X L lattices with L =s 64 is studied by Monte Carlo simulations. The 
results are consistent with the recently proposed singular dynamic scaling. The new 
dynamical exponents are estimated to be A, = 0.62 i0 .12  and B, = 3.92 f 0.89. Comparison 
with bond dilution strongly suggests that universality is violated for this model. 

Recently there has been considerable interest in the critical dynamics of diluted Ising 
systems at, or near, the percolation threshold for dimensions greater than one [l-61. 
Both analytic [2,3] and computational [4-61 work implies that conventional dynamic 
scaling [7] breaks down at low temperatures: the logarithm of the relaxation time 
depends quadratically upon the logarithm of the thermal correlation length. Although 
most of the work has been performed on various two-dimensional models, recently 
[6] a site-diluted three-dimensional Ising system has also been studied. 

Universality, which is a fundamental concept in phase transitions, implies that the 
critical behaviour depends only on the dimensionality and the symmetry of the problem, 
i.e. it is not influenced by the fine detail of the model such as site or bond percolation. 
Indeed, for the two-dimensional Ising model at the percolation threshold the static 
critical exponents, which are believed to be known exactly [8], are the same for site 
and bond percolation [9]. 

In this letter we present the data from Monte Carlo simulations of the two- 
dimensional Ising model on a square lattice at the site percolation threshold. On 
comparing the results for the dynamics with those obtained earlier for the same model 
at the bond percolation threshold [5], we shall find evidence that one of the new 
dynamical exponents is non-universal. 

The Hamiltonian is given by [9] 

H = -E qiqjsisj (1) 
(U) 

where Si = *l,  the sum runs over nearest neighbours only and the qi  are quenched 
site disorder variables with probability distribution 

P(qi)  = ( ~ - P ) S ( T ~ ) + J J ~ ( V ~ - ~ )  (2) 
where p is the site concentration. 

Throughout this letter the temperature is given in units of the nearest-neighbour 
exchange interaction, which is set equal to unity (as is Boltzmann's constant). The 
simulations were performed on L x L (L = 16,32 a rd  64) lattices with periodic boundary 
conditions in both directions and the site percolation threshold was taken to be 
pc = 0.5927 [ 101. 
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The computational work was carried out on the distributed array processor (DAP) 

at Queen Mary College, London. The speed of the program depends, among other 
factors, upon L and the number of Monte Carlo steps per spin (Mcs/spin) performed; 
the fastest speed we were able to achieve was approximately 5.8 million updates per 
second. 

As the temperature, T, is lowered, we find that both the thermal correlation length 
(see later) and relaxation times increase much more rapidly than for the bond percola- 
tion model [5]. As a consequence, the temperature range studied was restricted to 
0.8 C T C 2.0 (0.35 s T /  T, s 0.88, where [ 111 T,( P = 1) = 2.27 in our units). At T = 0.8 
the system only achieved equilibrium after the first lo6 Mcs/spin. For T 3 0.9 the data 
presented have been averaged over 75-238 samples and the statistical error bars are 
typically SlOYo; for T = 0.8, however, only fourteen samples were used and the error 
is about 22tY0. 

As the spins are all pointing up at the start of the simulation, the magnetisation 
M (  t ) ,  given by 

M (  t )  = N-' Si( t )  
I 

(3) 

where S i ( ? )  is the value of the ith spin at time t and N is the number of spins, is 
identically equal to one. The system is then allowed to evolve according to Glauber 
dynamics [12]. The decay of M ( t )  is not exponential and at low T it is close to 
logarithmic [ 6 ] .  After an equilibration time, t = T ~ ,  the system attains equilibrium 
[5,9]: M (  t = T ~ )  = 0. In order to investigate the dynamics of the model, we first look 
at the autocorrelation function 

C ( t )  = N-' 1 Si(fO)Si( t+ f o )  (4) 
I 

where to is an initial time and t > to. C (  t )  is seen to decrease with t and C (  t )  = 0 for 
t > to. For each temperature one chooses t o 2  T ~ .  In figures l (a )  and ( b )  we examine 
the decay of C ( t ) .  Clearly, the plot shown in figure l (b )  gives the better fit, i.e. the 
autocorrelation function decays algebraically over a broad time interval. An average 
relaxation time, TA", is defined by [13] 

At p = p c  one has an infinite cluster spanning the whole lattice as well as finite 
clusters [9]. One would not expect the various clusters to relax at the same rate. TAV 
averages over all the different relaxation rates and is a measure of the largest relaxation 
time of the system. Information concerning the decay of correlations with distance is 
obtained from 

where (. . JT denotes a thermal average and n(n = 0, 1, . . . , 16) is the displacement in 
the x direction. Statistically reliable data for r(n) were obtained for 1 . 0 s  T S  2.0 
(0.44s T /  Tc4 0.88). In figure 2 we plot In r(n) against n for various temperatures in 
the interval 1 . 0 s  T s 2.0 with L = 64. Hence we have 

U n )  - exp(-n/5,) (7) 



Letter to the Editor 

In t 

01 

L669 

in t 

Figure 1. ( a )  Relaxation of the autocorrelation function with In f ( L  = 64). The full curves 
are guides for the eye. ( b )  In C(t) plotted against In t. The data for T = 1.75 are for L = 32, 
whereas the rest are for L = 64. The good linear fits indicate that C( t )  decays algebraically. 
The curves (gradient 2 -1 )  are guides for the eye. 

for n >> tT, where tT is the thermal correlation length, allowing the latter to be extracted. 
tT is expected to behave as 

where vT is the thermal exponent and 5, is the amplitude. In figure 3 we plot In & 
against 1/ T for 1.0s T=Z 2.0 (here L =  64). As one expects equation (8) to be valid 
in the scaling regime where &3 1 (the lattice spacing), the weighted line of best fit is 
also shown; from the gradient and intercept one obtains vT= 1.31*0.04 and &= 
0.31 k0.03. The value for vT agrees well (within the error bars) both with the result 
obtained recently for the bond percolation problem [ 5 1  and the conjectured exact 
result [8] of 4. The amplitudes in the two cases, however, differ and 

(9) 

&T= 6 s  exp(2vTl T ,  (8) 

[,/ & = 1.42 * 0.20 
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Figure 2 
The straight lines are used to extract tT (see text). 

Logarithm of the correlation function against distance for several temperatures. 
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Figure 3. A plot of In tT against 1/ T( 1 .O G T G 2.0) for a 64 x 64 lattice at the site percolation 
threshold. As explained in the text, the weighted line of best fit (also shown) gives 
vT = 1.31 f 0.04 and 5, = 0.31 f 0.03. 



Letter to the Editor L67 1 

where &, is the amplitude for the bond percolation model [5] (note that in the notation 
of [5] the amplitude is given by lo). As a consequence, tT increases much faster for 
the site percolation case. For example, fT ( T  = 1.0) = 3.99 and by extrapolation one 
has tT ( T  = 0.8) = 8.69. Despite the rapid increase in the thermal correlation length, 
one still has tT<< L for all temperatures and sizes considered. Consequently, finite-size 
effects are negligible-this is confirmed explicitly for the dynamics. 

In the dynamic scaling hypothesis one has 

ln(TAV(T)) =f(ln f T ) .  (10) 

Conventional dynamic scaling [7], f ( x )  = Z x  (here 2 is a dynamic critical exponent), 
breaks down for this model and one instead has [2-61 

f ( x )  = Ax2+ Bx+ c (11) 

where A and B are new exponents and C is a temperature-independent constant which 
sets the microscopic timescale. From equations (8). (10) and (11) we can write 

ln (TAv(T) )=a , /T2+(Y2 /T+(Y~  (12) 

where a, = 4Av:, a2 = 2vT (B + 2A In 6,) and a3 = C + B In & + A(ln &)2. In figure 4 
we display the results for In TAV against 1/ T (0.8 G T G 2.0) for the site percolation 
model for various values of L. As mentioned above, there are no apparent finite-size 
effects. Assuming equation (12) to hold, we also show the best quadratic fit to the 

Figure 4. Here we show In T~~ against 1/ T, The data for the site percolation model are 
displayed by circles (64 x 64). squares (32 x 32) and full triangles (16 x 16); for comparison 
we also show the data (open triangles) obtained previously [ 5 ]  for the bond percolation 
problem on a 64 x 64 lattice. The best quadratic fit in each case is also shown. 
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data. For comparison, also shown are the data for the bond percolation case [ 5 ] .  In 
both cases singular dynamic scaling (equation (12)) is seen to hold at low temperatures. 
For the data shown we have A, = 0.62 * 0.12, B, = 3.92 f 0.89 and Ab = 0.5 1 f 0.05, 
Bb = 3.25 f 0.41 [5], where the subscripts s and b refer to the site and bond percolation 
cases, respectively. We note that recently [3] Ab-2.16 was obtained by applying a 
decimation procedure to the bond percolation model on a square lattice. As this 
method gives neither the correct static percolation exponent nor the known exact value 
of p c  (=:) [14], we have reservations about this large value for A,. 

We can also consider 

M & v / e v )  = P1/T2+P2/T+P3 (13) 

where the superscripts once again refer to site and bond percolation and 

( B ,  In 5, - Bt, In (b) + [A,(ln 5,)* - Ab(ln &)*I. Hence, if the exponent A is universal 
(A ,  = Ab) one would expect a plot of ln(Tiv/&v) against 1/ T to be linear. Further, 
if B is also universal ( B ,  = B b )  one would expect the slope of the linear fit to be 

PI =4Y$(AS-Ab), p2 = 2+[(B,- Bb)+2(A, In (,-Ab In (b)] and P 3 =  (Cs-cb) + 

P2(As=Ab=A, B S = & ) = ~ V T A  ln(t~/[b) 

= 1.23 f 0.86 (14) 

where the numerical value has been obtained by assuming equation (9) and that 
0 .46sAs0.74 .  Figure 5 shows a plot of ln(TiV/&V) against 1/T. We obtain a 

> 
1 / T  

Figure 5. The data shown in figure 2 are replotted here as ln(TXv/Tiv) against 1/ T. The 
best linear fit has slope 3.94h0.37 and intercept -1.47k0.2; if B were universal one would 
expect a slope of 1.23 f 0.86. 



Letter to the Editor L673 

reasonable linear fit over a broad temperature range. So this would tend to confirm 
that A is universal. Further, the line of best fit (which is also shown in figure 5 )  has 
gradient = 3.94* 0.37, which is inconsistent with equation (14). As a consequence, we 
suggest that if A is universal (which seems likely) then B is non-universal between 
bond and site percolation. 

To conclude, we have shown that the two-dimensional Ising model at the site 
percolation threshold has singular dynamic scaling. The autocorrelation function has 
been shown to decay algebraically with time. Further, on comparing our results with 
those obtained for the bond percolation problem, we find strong evidence which 
supports the view that, while A is possibly universal, the dynamic exponent B is 
non-universal. 

I should like to thank Dr R B Stinchcombe for many helpful discussions and comments 
on this work. Financial assistance from the Science and Engineering Research Council 
(Great Britain) is acknowledged. 
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